J an 2 00 7 High Dimensional Covariance Matrix Estimation Using a Factor Model ∗

نویسندگان

  • Jianqing Fan
  • Yingying Fan
  • Jinchi Lv
چکیده

High dimensionality comparable to sample size is common in many statistical problems. We examine covariance matrix estimation in the asymptotic framework that the dimensionality p tends to ∞ as the sample size n increases. Motivated by the Arbitrage Pricing Theory in finance, a multi-factor model is employed to reduce dimensionality and to estimate the covariance matrix. The factors are observable and the number of factors K is allowed to grow with p. We investigate impact of p and K on the performance of the model-based covariance matrix estimator. Under mild assumptions, we have established convergence rates and asymptotic normality of the model-based estimator. Its performance is compared with that of the sample covariance matrix. We identify situations under which the factor approach increases performance substantially or marginally. The impacts of covariance matrix estimation on portfolio allocation and risk management are studied. The asymptotic results are supported by a thorough simulation study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High dimensional covariance matrix estimation using a factor model

High dimensionality comparable to sample size is common in many statistical problems. We examine covariance matrix estimation in the asymptotic framework that the dimensionality p tends to∞ as the sample size n increases. Motivated by the Arbitrage Pricing Theory in finance, a multi-factor model is employed to reduce dimensionality and to estimate the covariance matrix. The factors are observab...

متن کامل

Large Covariance Estimation by Thresholding Principal Orthogonal Complements.

This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (PO...

متن کامل

Group Lasso Estimation of High-dimensional Covariance Matrices

In this paper, we consider the Group Lasso estimator of the covariance matrix of a stochastic process corrupted by an additive noise. We propose to estimate the covariance matrix in a highdimensional setting under the assumption that the process has a sparse representation in a large dictionary of basis functions. Using a matrix regression model, we propose a new methodology for high-dimensiona...

متن کامل

Covariance Estimation: The GLM and Regularization Perspectives

Finding an unconstrained and statistically interpretable reparameterization of a covariance matrix is still an open problem in statistics. Its solution is of central importance in covariance estimation, particularly in the recent high-dimensional data environment where enforcing the positive-definiteness constraint could be computationally expensive. We provide a survey of the progress made in ...

متن کامل

CS 545 : Assignment 8 Dan

Mixture of Probabilistic Principal Component Analyzers (MPPCA) is a seminal work in Machine Learning in that it was the first to use PCA to perform clustering and local dimensionality reduction. MPPCA is based upon the mixture of Factor Analyzers (MFA) which is similar to MPPCA except is uses Factor Analysis to estimate the covariance matrix. This algorithm is of interest to me because it is re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006